SU(2) Charges as Angular Momentum in $N = 1$ **Self-Dual Supergravity**

Sze-Shiang Feng,1,2,4,5 Zi-Xing Wang,³ and Xi-Jun Qiu²

Received February 11, 1998

The $N = 1$ self-dual supergravity has $SL(2, \mathbb{C})$ symmetry. This symmetry results in *SU*(2) charges as the angular momentum. As in nonsupersymmetr ic self-dual gravity, the currents are also of their potentials and are therefore identically conserved. The charges are generally invariant and gauge covariant under local *SU*(2) transforms and approach being rigid at spatial infinity. The Poisson brackets constitute the *su*(2) algebra and hence can be interpreted as the generally covariant conservative angular momentum.

The study of self-dual gravities has drawn much attention in the past decade since the discovery of Ashtekar's new variables, in terms of which the constraints can be greatly simplified.^{$(1,2)$} The new phase variables consist of densitized $SU(2)$ soldering forms \hat{e}^i A^B from which a metric density is obtained according to the definition $q_{ii} = -\text{Tr}\tilde{e}_i\tilde{e}_i$, and a complexified connection A_{iA}^B which carries the momentum dependence in its imaginary part. Ashtekar's original self-dual canonical gravity also permits a Lagrangian formulation.^{$(3,4)$} The supersymmetric extension of this Lagrangian formulation, which is equivalent to simple real supergravity, was proposed by Jacobson, (5) and the corresponding Ashtekar complex canonical transform was given by Gorobey and Lukyanenko.⁽⁶⁾ The Lagrangian density is $^{(5)}$

¹CCAST (World Laboratory), P.O. Box 8730, Beijing 100080, China.
² Physics Department, Shanghai University, 201800, Shanghai, China.
³ Institute of Nuclear Research, Academia Sinica, 201800, Shanghai, China.
⁴ Cent

^{201800,} Shanghai, China; e-mail: xjqiu@fudan.ac .cn.

$$
\mathcal{L}_j = \frac{1}{\sqrt{2}} \left(e^{AA'} \wedge e_{BA'} \wedge F_A^B + ie^{AA'} \wedge \Psi_{A'} \wedge \mathcal{D}\Psi_A \right) \tag{1}
$$

The dynamical variables are the real tetrad $e^{AA'}$ ("real" means $e^{A'A} = e^{AA'}$), the traceless left-handed $SL(2, \mathbb{C})$ connection $A_{\mu MN}$, and the complex anticommuting spin-3/2 gravitino field ψ_{μ} . The *SL*(2, $\hat{\mathbb{C}}$) covariant exterior derivative is defined by

$$
\mathfrak{D}\psi_M := d\psi_M + A_M{}^N \wedge \psi_N \tag{2}
$$

and the curvature 2-form is

$$
F_M{}^N := dA_M{}^N + A_M{}^P \wedge A_P{}^N \tag{3}
$$

The indices are lowered and raised with the antisymmetric $SL(2, \mathbb{C})$ spinor ϵ^{AB} and its inverse ϵ_{AB} according to the convention $\lambda_B = \lambda^A \epsilon_{AB}$, $\lambda^A = \epsilon^{AB} \lambda_B$, and the implied summations are always in northwesterly fashion: from the left-upper to the right-lower. The Lagrangian equation (1) is a holomorphic function of the connection, and the equation for A_{μ}^{B} is equivalent to

$$
\mathfrak{D}e^{AA'} = \frac{i}{2} \psi^A \wedge \bar{\psi}^{A'} \tag{4}
$$

provided $e^{AA'}$ is real. The Lagrangian $\frac{1}{2}(\mathcal{L}^J + \mathcal{L}^J)$ for real supergravity is a nonholomorph ic function, but leads to no surfeit of field equations. Under the left-handed local supersymmetric transform generated by the anticommuting parameters ϵ _{*A*}

$$
\delta \psi_A = 2 \mathfrak{D} \epsilon_A, \qquad \delta \psi_{A'} = 0, \qquad \delta e_{AA'} = -i \psi_{A'} \epsilon_A \tag{5}
$$

the Lagrangian \mathcal{L}_J is invariant *without* using any of the Euler-Lagrangian equations, while under the right-handed transform

$$
\delta \psi_A = 0, \qquad \delta \psi_{A'} = 2 \mathfrak{D} \bar{\epsilon}_{A'}, \qquad \delta e_{AA'} = -i \psi_A \bar{\epsilon}_{A'} \tag{6}
$$

 \mathcal{L}_I is invariant *modulo* the field equations.

The $(3 + 1)$ decomposition is effected as

$$
\mathcal{L}_j = \tilde{e}^{kAB} \dot{A}_{kAB} + \tilde{\pi}^{KA} \dot{\psi}_{kA} - \mathcal{H}
$$
\n⁽⁷⁾

$$
\mathcal{H} := e_{0AA'} \mathcal{H}^{AA'} + \psi_{0A} \mathcal{G}^A + \hat{\mathcal{G}}^{A'} \psi_{0A'} + A_{0AB} \mathcal{J}^{AB} + \text{(total divergence)} \quad (8)
$$

The canonical momenta are

$$
\tilde{e}^{kAB} := -\frac{1}{\sqrt{2}} \,\boldsymbol{\epsilon}^{ijk} e_i{}^{AA'} e_{jA'}^B \tag{9}
$$

$$
\tilde{\boldsymbol{\pi}}^{k\mathcal{A}} := \frac{i}{\sqrt{\mathcal{L}}} \,\boldsymbol{\epsilon}^{ijk} e_i^{\mathcal{A}\mathcal{A}'} \boldsymbol{\Psi}_{j\mathcal{A}'} \tag{10}
$$

*SU***(2) Charge and Self-Dual Supergravity 1417**

and the constraints are

$$
\mathcal{H}^{AA'} := \frac{1}{\sqrt{2}} \epsilon^{ijk} (e_i^{BA'} F_{jkB}^A - i \Psi_i^{A'} \mathfrak{D}_j \Psi_K{}^A)
$$
(11)

$$
\mathcal{G}^A := \mathfrak{D}_k \tilde{\pi}^{kA} \tag{12}
$$

$$
\hat{\mathcal{G}}^{A'} := \frac{i}{\sqrt{\mathcal{L}}} \,\boldsymbol{\epsilon}^{ijk} e_i{}^{AA'} \mathfrak{D}_j \psi_{kA} \tag{13}
$$

$$
\mathcal{J}^{AB} := \mathfrak{D}_k \tilde{e}^{kAB} - \tilde{\pi}^{k(A} \psi_k^B)
$$
 (14)

The 0-components e_{0AA} , Ψ_{0A} , Ψ_{0A} , and A_{0AB} are just the Lagrange multipliers and the dynamical conjugate pairs are (e^{kAB}, A_{jAB}) , $(\tilde{\pi}^{kA}, \psi_{kA})$. The constraints $\mathcal{H}^{AA'} = 0$ and $\hat{\mathcal{G}}^{A'} = 0$ generate

$$
\ddot{\mathcal{H}}^{AB} := (\tilde{e}^j \tilde{e}^k F_{jk})^{AB} + 2 \tilde{\pi}^j \tilde{e}^k \mathfrak{D}_{[j} \psi_{kj} \epsilon^{AB} + 2(\tilde{\pi}^j \mathfrak{D}_{[j} \psi_{kj}) \tilde{e}^{kAB} = 0 \quad (15)
$$

$$
\mathcal{G}^{\dagger A} := \frac{1}{\sqrt{\mathcal{L}}} \,\boldsymbol{\epsilon}^{ijk} \tilde{e}^{AB}_{i} \mathcal{D}_{j} \psi_{kB} = 0 \tag{16}
$$

The equations of motion will be properly expressed in Hamiltonian form \dot{f} = ${H, f}$ if we assign the Poisson brackets

$$
\{\tilde{e}^{kAB}(x), A_{jAB}(y)\} = \delta_j^k \delta^A_{(M} \delta_N^B \delta^3(x, y) \tag{17}
$$

$$
\{\tilde{\pi}^{kA}(x), \psi_{jA}(y)\} = -\delta_j^k \delta_M{}^A \delta^3(x, y) \tag{18}
$$

all other brackets among these quantities being zero. This is the outline of the theory.

In previous work we obtained the *SU*(2) charges and the energy-momentum in the Ashtekar formulation of Einstein gravity^(7,8) and they are closely related to the angular momentum⁽⁹⁻¹¹⁾ and the energy-momentum⁽¹²⁾ in the vierbein formalism of Einstein gravity. The fact that the algebra formed by their Poisson brackets does constitute the 3-Poincaré algebra on the Cauchy surface supports from another aspect that their definitions are reasonable. Similarly, the study of *SU*(2) charges in the self-dual supergravity considered is also an interesting subject. In the following, we will employ the $SL(2, \mathbb{C})$ invariance to obtain conservative charges as we did previously.⁽⁸⁾ Under any *SL*(2, \mathbb{C}) transform

$$
e_{\mu A A'} \rightarrow L_A^B \overline{R}_{A'}{}^{B'} e_{\mu B B'}, \qquad \psi_A \rightarrow L_A^B \psi_B, \qquad \overline{\psi}_{A'} \rightarrow \overline{R}_{A'}{}^{B'} \overline{\psi}_{B'}
$$

$$
A_{\mu M N} \rightarrow L_M{}^A A_{\mu A}{}^B (L^{-1})_{B N} + L_M{}^A \partial_{\mu} (L^{-1})_{A N} \tag{19}
$$

 \mathcal{L}_J is invariant. *L* and \bar{R} are not necessarily related by complex conjugation. Note that $L_{AB} = -(L^{-1})_{BA}$; the transform of *A* may also be written as

$$
A_{\mu MN} \to L_M^A L_N^B A_{\mu AB} - L_M^A \partial_\mu L_{NA}
$$
 (20)

For infinitesimal transform, $L_A^B = \delta_A^B + \xi_A^B$, where $\xi_{AB} = -\xi_{BA}$ are infinitesimal parameters. Thus we have

$$
\delta_{\xi} A = [\xi, A] - d\xi, \qquad \delta \psi = \xi \psi \tag{21}
$$

When calculating the variation of the Lagrangian, one must take into consideration the anticommuting feature of the gravitino field. We write the variation in such a way that

$$
\delta \mathcal{L}_J = \delta \phi^A \left(\frac{\partial}{\partial \phi^A} - \partial_\mu \frac{\partial}{\partial \partial_\mu \phi^A} \right) \mathcal{L}_J + \partial_\mu \left(\delta \phi^A \frac{\partial}{\partial \partial_\mu \phi^A} \mathcal{L}_J \right) \tag{22}
$$

where ϕ^A denotes any field involved in the first-order Lagrangian. Now both $\partial/\partial \phi^A$ and $\partial/\partial \partial_\mu \phi^A$ are (anti)commuting if ϕ^A is (anti)commuting, and so there is no ordering problem.

The invariance of \mathcal{L}_J under the infinitesimal *SL*(2, \mathbb{C}) transform is equivalent to the following *modulo* the field equations:

$$
\partial_{\rho} \left(\delta A_{\sigma A}{}^{B} \frac{\partial \mathcal{L}_{I}}{\partial \partial_{\rho} A_{\sigma A}{}^{B}} + \delta \psi_{\sigma A} \frac{\partial \mathcal{L}_{I}}{\partial \partial_{\rho} \psi_{\sigma A}} \right) = 0 \tag{23}
$$

For constant ξ , we have

$$
\partial_{\rho} \left(\frac{1}{\sqrt{2}} \epsilon^{\mu \nu \rho \sigma} e_{\mu}{}^{AA'} e_{\nu BA'}[\xi, A_{\sigma}]_{A}{}^{B} + \frac{i}{\sqrt{2}} \epsilon^{\mu \nu \rho \sigma} e_{\mu}{}^{AA'} \Psi_{\nu A'}(\xi \Psi_{\sigma})_{A} \right) = 0 \tag{24}
$$

We therefore have the conservation of *SU*(2) charges

$$
\partial_{\mu} \tilde{J}_{AB}^{\mu} = 0 \tag{25}
$$

where

$$
\tilde{j}_{AB}^0 = \frac{1}{\sqrt{2}} \epsilon^{\mu\nu\rho\sigma} \Bigg(e_{\mu A}{}^{A'} e_{\nu M A'} A_{\sigma B}{}^{M} - e_{\mu}{}^{M A'} e_{\nu B A'} A_{\sigma M A} + \frac{i}{2} e_{\mu A}{}^{A'} \bar{\psi}_{\nu A'} \psi_{\sigma B} + \frac{i}{2} e_{\mu B}{}^{A'} \bar{\psi}_{\nu A'} \psi_{\sigma A} \Bigg)
$$
\n(26)

Thus

$$
J_{AB} = \int_{\Sigma} \tilde{J}_{AB}^0 d^3x \tag{27}
$$

where

$$
j_{AB}^{0} = \frac{1}{\sqrt{2}} \epsilon^{ijk} \left(e_{iA}{}^{A'} e_{jMA'} A_{kB}{}^{M} - e_{i}{}^{MA'} e_{jBA'} A_{kMA} + \frac{i}{2} e_{iA}{}^{A'} \Psi_{jA'} \Psi_{kB} + \frac{i}{2} e_{iB}{}^{A'} \Psi_{jA'} \Psi_{kA} \right)
$$
(28)

Using Eqs. (9) and (10), we can write \tilde{J}_{AB}^0 as

$$
\tilde{J}_{AB}^0 = [\tilde{e}^k, A_k]_{AB} + \tilde{\pi}_{k(A} \psi_B^k)
$$
(29)

The constraint $\mathcal{T}_{AB} = 0$ guarantees that

$$
J_{AB} \approx \int_{\Sigma} \partial_k \tilde{e}_{AB}^k = \int_{\partial \Sigma} \tilde{e}_{AB}^k ds_i
$$
 (30)

where $ds_i = \frac{1}{2} \epsilon_{ijk} dx^j \wedge dx^k$. It can also be obtained in the following way. Using the field equation $e^{A'(A)} \wedge (\mathcal{D}e^{B)}_A - \frac{i}{2} \psi^{B} \wedge \psi^{A'} = 0$, we have

$$
\epsilon^{\rho\mu\nu\sigma} \left[e_{\mu A}^{A'} \left(\partial_{\sigma} e_{\nu B A'} + A_{\sigma B}^{M} e_{\nu M A'} + \frac{i}{2} \Psi_{\nu A'} \Psi_{\sigma B} \right) + e_{\mu B}^{A'} \left(\partial_{\sigma} e_{\nu A A'} + A_{\sigma A}^{M} e_{\nu M A'} + \frac{i}{2} \Psi_{\nu A'} \Psi_{\sigma A} \right) \right] = 0 \tag{31}
$$

so

$$
\tilde{J}_{AB}^{\rho} = -\frac{1}{\sqrt{2}} \epsilon^{\rho \mu \nu \sigma} \partial_{\sigma} (e_{\mu}^{A'} e_{\nu B A'}) \tag{32}
$$

Using

$$
e_{\mu A}^{A'} e_{\nu]BA'} = e_{\mu AC} e_{\nu]B}^{C} - i \sqrt{2} n_{\mu} e_{\nu]AB}
$$
 (33)

we have

$$
\tilde{J}_{AB}^{0} = -\frac{1}{\sqrt{2}} \epsilon^{ijk} \partial_{k} (e_{[iA}^{A'} e_{j]BA'})
$$
\n
$$
= -\frac{1}{\sqrt{2}} \epsilon^{ijk} \partial_{k} (e_{[iA} c e_{j]B}^{C} - i \sqrt{2} n_{[i} e_{j]AB})
$$
\n
$$
= \frac{1}{\sqrt{2}} \epsilon^{ijk} \partial_{k} (e_{i} e_{j})_{AB} = \partial_{k} \tilde{e}_{AB}^{k}
$$
\n(34)

which is exactly the same as Eq. (30) We can thus have the Poisson brackets

$$
\{J_{AB}, J_{MN}\} = \left\{ \int_{\partial \Sigma} \tilde{e}_{AB}^k ds_k, \int_{\Sigma} (\tilde{e}_M^{i} A_{iPN} + \tilde{e}_N^{i} A_{iPN}) d^3x \right\}
$$

$$
= \frac{1}{2} (J_{MA} \epsilon_{NB} + J_{MB} \epsilon_{NA} + J_{NA} \epsilon_{MB} + J_{MA} \epsilon_{NB})
$$
(35)

Now the flat dreibein on Σ is needed in order to find the angular momentum J_i . To clarify the notions, we use the following conventions: μ , ν , ... denote the 4-dimensional curved indices and *i*, *j*, *k*, denote the 3-dimensional curved indices on Σ ; *a*, *b*, *c*, ... denote the flat 4-dimensional indices and *l*, *m*, *n*, ... denote the flat 3-dimensional indices on Σ . The rigid flat vierbein is denoted E_{AA}^{a} and the rigid flat dreibein is denoted E_{AB}^{m} . Then define

$$
J_m := \frac{1}{\sqrt{2}} E_m^{AB} J_{AB} \tag{36}
$$

and using the relation $\epsilon^{mn}E_mE_n = \sqrt{\Sigma}E^l$, we have

$$
\{J_m, J_n\} = \epsilon_{mn} J^l \tag{37}
$$

Therefore the $su(2)$ algebra is restored. As in the nonsupersymmetric case,⁽⁸⁾ we can also obtain only the $SU(2)$ charges instead of the whole $SL(2, \mathbb{C})$ charges. Yet, the angular momentum *Jab* obtained in refs. 9 and 10 is completely contained in J_{MN} since we have from Eq. (32) that

$$
\tilde{J}_{AB}^0 = -\frac{1}{2} \tilde{J}_{ab}^0 E^a{}_A{}^A E^b_{BA}{}^i \tag{38}
$$

where \tilde{f}_{ab}^{ρ} is the angular momentum current obtained in refs. 9 and 10,

$$
\tilde{j}_{ab}^{\rho} = \sqrt{\underline{b}} \epsilon^{\rho \sigma \mu \nu} \partial_{\sigma} (e_{\mu a} e_{\nu b}) \tag{39}
$$

and the angular momentum is

$$
J_{ab} = \int_{\Sigma} \tilde{j}_{ab}^0 d^3x \tag{40}
$$

Hence

$$
J_{MN} = -\frac{1}{2}J^{ab}E_{[aM}^{'}E_{b]NA'} = -\frac{1}{2}(J^{ij}E_{[iAC}E_{j]}^{BC} - i\sqrt{2}J^{0i}n_0E_{iA}^{'}B) \quad (41)
$$

=
$$
\frac{1}{\sqrt{2}}(L_i - iK_i)E_{MN}^{i}
$$

where $L_i = \frac{1}{2} \epsilon_{ijk} J^{jk}$ are the spatial rotations and $K_i = J_{0i} = -J^{0i}$ are the Lorentz boosts. Therefore

$$
J_i = \frac{1}{2} (L_i - iK_i)
$$
 (42)

Bear in mind that both $\frac{1}{2}(L_i - iK_i)$ and $\frac{1}{2}(L_i + iK_i)$ obey the *su*(2) algebra.⁽¹³⁾ Actually, the boost charges are vanishing as can be seen from Eq. (30). Thus we can obtain the angular momentum in the self-dual simple supergravity once *JMN* is known.

We make a few final remarks. The total charges take the same integral form as those in the nonsupersymmetric case. Though we can obtain the *SU*(2) sector of the $SL(2, \mathbb{C})$ charges, the information of the angular momentum is completely contained in the *SU*(2) charges. It can be seen from the surface integrals that the angular momentum is governed by the r^{-2} part of \tilde{e}^i . As in refs. 1 and 2, we always assume that the phase space variables are subject to the boundary conditions

$$
e_{AB}^{\mu}|\partial \Sigma = \left(1 + \frac{M(\theta, \phi)}{r}\right)^2 e_{AB}^{\mu} + O(1/r^2), \qquad A_{\mu M N}|\partial \Sigma = O(1/r^2) \quad (43)
$$

$$
\tilde{\pi}_A^i = O(1/r), \qquad \psi_{\mu A} = O(1/r) \tag{44}
$$

where \mathring{e}_{AB}^{μ} denote the flat $SU(2)$ soldering forms. As a consequence, under the $SL(2, \mathbb{C})$ transforms behaving as

$$
L_A^B = \Lambda_A^B + O(1/r^{1+\epsilon}) \qquad (\epsilon > 0)
$$
 (45)

where Λ are rigid transforms, the charges transform as

$$
J_{MN} \to \Lambda_M^A \Lambda_N^B J_{AB} \tag{46}
$$

i.e., they are gauge covariant. Their conservation is generally covariant. As in the nonsupersymmetric case, $(7,8)$ the currents also have potentials, i.e., can be expressed as a divergence of an antisymmetric tensor density. So they are identically conserved. Upon quantization, the Poisson brackets correspond to the quantal commutators and their algebra realizes indeed the *su*(2) algebra. This shows that the interpretations are reasonable.

It is novel that the relation between J_{MN} and the constraint \mathcal{T}^{AB} is the same as that between the electric charge and the Gauss law constraint in $QED₁⁽¹⁴⁾$

$$
\nabla \cdot \mathbf{E} - e \Psi \gamma_0 \Psi = 0 \tag{47}
$$

$$
q = \int_{\partial \Sigma} \mathbf{E} \cdot d\mathbf{S} \tag{48}
$$

So the *J_{MN}* is a kind of gauge charge.

ACKNOWLEDGMENT

This work was supported in part by the National Science Foundation of China.

REFERENCES

- 1. A Ashtekar, *Phys. Rev. Lett.* **57**, 2244 (1986); *Phys. Rev. D*, **36**, 1587 (1987).
- 2. A. Ashtekar, *New Perspectives in Canonical Gravity*, Bibliopolis, Naples (1988).
- 3. T. Jacobson and L. Smolin, *Phys. Lett. B* **196**, 39 (1987).
- 4. J. Samuel, *Pramana J. Phys.* **28**, L429 (1987).
- 5. T. Jacobson, *Class. Quantum Grav.* **5**, 923 (1988).
- 6. N. N. Gorobey and A. S. Lukyanenko, *Class. Quantum Grav.* **7**, 67 (1990).
- 7. S. S. Feng and Y. S. Duan, *Gen. Rel. Grav.* **27**(8), 887 (1995).
- 8. S. S. Feng and Y. S. Duan, *Commun. Theor. Phys.* **25**, 485 (1996).
- 9. Y. S. Duan and S. S. Feng, *Commun. Theor. Phys.* **25**, 99 (1996).
- 10. S. S. Feng and H. S. Zong, *Int. J. Theor. Phys.* **35**, 267 (1996); S. S. Feng and Y. S. Duan, *Grav. Cos.* **1**, 319 (1995).
- 11. S. S. Feng, *Nucl. Phys. B* **468**, 163 (1996).
- 12. Y. S. Duan and J. Y. Zhang, *Acta Phys. Sinica* **19**, 589 (1963).
- 13. S. Weinberg, *The Quantum Theory of Fields*, Vol. I, Cambridge University Press, Cambridge (1995).
- 14. Y. B. Dai, *Gauge Theory of Interactions*, Science Publishers (1987) [in Chinese].